6 research outputs found

    Geometrical approach to SU(2) navigation with Fibonacci anyons

    Full text link
    Topological quantum computation with Fibonacci anyons relies on the possibility of efficiently generating unitary transformations upon pseudoparticles braiding. The crucial fact that such set of braids has a dense image in the unitary operations space is well known; in addition, the Solovay-Kitaev algorithm allows to approach a given unitary operation to any desired accuracy. In this paper, the latter task is fulfilled with an alternative method, in the SU(2) case, based on a generalization of the geodesic dome construction to higher dimension.Comment: 12 pages, 5 figure

    Quantum Algebras Associated With Bell States

    Full text link
    The antisymmetric solution of the braided Yang--Baxter equation called the Bell matrix becomes interesting in quantum information theory because it can generate all Bell states from product states. In this paper, we study the quantum algebra through the FRT construction of the Bell matrix. In its four dimensional representations via the coproduct of its two dimensional representations, we find algebraic structures including a composition series and a direct sum of its two dimensional representations to characterize this quantum algebra. We also present the quantum algebra using the FRT construction of Yang--Baxterization of the Bell matrix.Comment: v1: 15 pages, 2 figures, latex; v2: 18 pages, 2 figures, latex, references and notes adde

    Non-Abelian Anyons and Topological Quantum Computation

    Full text link
    Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {\it Non-Abelian anyons}, meaning that they obey {\it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance of a topological quantum computer arises from the non-local encoding of the states of the quasiparticles, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the \nu=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultra-cold atoms in optical lattices and thin film superconductors. In this review article, we describe current research in this field, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of topological quantum computation and the physics of the subject using the \nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.Comment: Final Accepted form for RM

    Degeneracy of non-abelian quantum Hall states on the torus: domain walls and conformal field theory

    Get PDF
    We analyze the non-abelian Read-Rezayi quantum Hall states on the torus, where it is natural to employ a mapping of the many-body problem onto a one-dimensional lattice model. On the thin torus--the Tao-Thouless (TT) limit--the interacting many-body problem is exactly solvable. The Read-Rezayi states at filling ν=kkM+2\nu=\frac k {kM+2} are known to be exact ground states of a local repulsive k+1k+1-body interaction, and in the TT limit this is manifested in that all states in the ground state manifold have exactly kk particles on any kM+2kM+2 consecutive sites. For M≠0M\neq 0 the two-body correlations of these states also imply that there is no more than one particle on MM adjacent sites. The fractionally charged quasiparticles and quasiholes appear as domain walls between the ground states, and we show that the number of distinct domain wall patterns gives rise to the nontrivial degeneracies, required by the non-abelian statistics of these states. In the second part of the paper we consider the quasihole degeneracies from a conformal field theory (CFT) perspective, and show that the counting of the domain wall patterns maps one to one on the CFT counting via the fusion rules. Moreover we extend the CFT analysis to topologies of higher genus.Comment: 15 page

    One-particle density matrix and momentum distribution function of one-dimensional anyon gases

    Full text link
    We present a systematic study of the Green functions of a one-dimensional gas of impenetrable anyons. We show that the one-particle density matrix is the determinant of a Toeplitz matrix whose large N asymptotic is given by the Fisher-Hartwig conjecture. We provide a careful numerical analysis of this determinant for general values of the anyonic parameter, showing in full details the crossover between bosons and fermions and the reorganization of the singularities of the momentum distribution function. We show that the one-particle density matrix satisfies a Painleve VI differential equation, that is then used to derive the small distance and large momentum expansions. We find that the first non-vanishing term in this expansion is always k^{-4}, that is proved to be true for all couplings in the Lieb-Liniger anyonic gas and that can be traced back to the presence of a delta function interaction in the Hamiltonian.Comment: 21 pages, 4 figure

    Architectural design for a topological cluster state quantum computer

    Full text link
    The development of a large scale quantum computer is a highly sought after goal of fundamental research and consequently a highly non-trivial problem. Scalability in quantum information processing is not just a problem of qubit manufacturing and control but it crucially depends on the ability to adapt advanced techniques in quantum information theory, such as error correction, to the experimental restrictions of assembling qubit arrays into the millions. In this paper we introduce a feasible architectural design for large scale quantum computation in optical systems. We combine the recent developments in topological cluster state computation with the photonic module, a simple chip based device which can be used as a fundamental building block for a large scale computer. The integration of the topological cluster model with this comparatively simple operational element addresses many significant issues in scalable computing and leads to a promising modular architecture with complete integration of active error correction exhibiting high fault-tolerant thresholds.Comment: 14 Pages, 8 Figures, changes to the main text, new appendix adde
    corecore